中文  
专家人才
论文
专著
专利
获奖
-- 2021改版分割 --
专家人才
奖励
论文
专著
专利
标准
友情链接
中国科学院
国家发改委
国家自然科学基金委
中国科学技术部
中国科普博览
中国化工信息网
美国能源部
澳大利亚联邦科学与研究组织(CSIRO)
山西省科学技术厅
洁净能源创新研究院
您当前的位置:首页>科研成果>论文
论文编号: 122214O120120120
第一作者所在部门: 709组
中文论文题目:
英文论文题目: Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage
论文题目英文:
作者: 陈成猛
论文出处:
刊物名称: Journal of Materials Chemistry
: 2012
: 22
: 28
: 14076-14084
联系作者:
收录类别:
影响因子: 5.968
摘要: Graphene with mediated surface properties and three-dimensional hierarchical architectures show unexpected performance in energy conversion and storage. To achieve advanced graphene electrode supercapacitors, manipulating the graphene building-blocks into hierarchical nanostructured carbon materials with large electrical double layer capacitance and pseudo-capacitance is a key issue. Here, it is shown that the hierarchically aminated graphitic honeycombs (AGHs) with large surface area for electrical double layer capacitance, tunable surface chemistry for pseudo-capacitance, mediated 3D macropores for ion buffering, and low-resistant pathways for ion diffusion are fabricated for electrochemical capacitive energy storage application through a facile high vacuum promoted thermal expansion and subsequent amination process. In the initial stage of amination (similar to 200 degrees C), NH3 reacts with carboxylic acid species to form mainly intermediate amides and amines through nucleophilic substitution. As the temperature increases, the intramolecular dehydration and decarbonylation will take place to generate thermally more stable heterocyclic aromatic moieties such as pyridine, pyrrole, and quaternary type N sites. The AGH exhibits a promising prospect in supercapacitor electrodes with high capacitance (e.g. maximum gravimetric capacitance 207 F g(-1) and specific capacitance 0.84 F m(-2) at a scan rate of 3 mV s(-1)) and extraordinary stability (e.g. 97.8% of capacitance retention after 3000 cycles, and 47.8% of capacitance maintaining at a high scan rate of 500 mV s(-1) comparing with that at 3 mV s(-1)). This provides a novel structure platform for catalysis, separation, and drug delivery, which require fast mass transfer through mesopores, reactant reservoirs, and tunable surface chemistry.
英文摘要:
外单位作者单位:
备注:

关闭窗口