(1) S.N. Li, H.Q. Zhu*, Z.F. Qin*, G.F. Wang, Y.G. Zhang, Z.W. Wu, Z.K. Li, G. Chen, W.W. Dong, Z.H. Wu, L.R. Zheng, J. Zhang, T.D. Hu, J.G. Wang*, Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation. Appl. Catal. B: Environ. 2014, 144: 498-506.
(2) R.Y. Wang, Z.W. Wu, C.M. Chen, Z.F. Qin*, H.Q. Zhu, G.F. Wang, H. Wang, C.M. Wu, W.W. Dong, W.B. Fan, J.G. Wang*, Graphene-supported Au-Pd bimetallic nanoparticles with excellent catalytic performance in selective oxidation of methanol to methyl formate, Chem. Commun., 2013, 49 (74): 8250-8252
(3) Z.W. Wu, H.Q. Zhu, Z.F. Qin,, H. Wang, J. Ding, L. Huang, J.G. Wang*, CO preferential oxidation in H2-rich stream over a CuO/CeO2 catalyst with high H2O and CO2 tolerance, Fuel,2013,104: 41-45
(4) B. Wang, Z.F. Qin *, G.F. Wang, Z.W. Wu, W.B. Fan, H.Q. Zhu, S.N. Li, Y.G. Zhang, Z.K. Li, J.G. Wang*. Catalytic Combustion of Lean Methane at Low Temperature Over Palladium on a CoOx–SiO2 Composite Support, Catal Lett, 2013, 143: 411–417.
(5) Y.G. Zhang, Z.F. Qin*, G. Wang, H.Q. Zhu, M. Dong, S. Li, Z. Wu, Z. Li, Z. Wu, J. Zhang, T. Hu, W.B. Fan, J.G. Wang*, Catalytic performance of MnOx–NiO composite oxide in lean methane combustion at low temperature, Appl. Catal. B: Environmental, 2013, 129 (1): 172–181.
(6) X.L. Lu, Z.F. Qin, M. Dong, H.Q. Zhu, G.F. Wang, Y.B. Zhao, W.B. Fan, J.G. Wang*, Selective oxidation of methanol to dimethoxymethane over acid-modified V2O5/TiO2 catalysts, Fuel, 2011, 90(4): 1335–1339.
(7) Z.W. Wu, H.Q. Zhu, Z.F. Qin,, H. Wang, L. Huang, J.G. Wang*, Preferential oxidation of CO in H2-rich stream over CuO/Ce1-xTixO2 catalysts, Appl. Catal. B: Environ, 2010, 98(3-4): 204-212.
(8) H. Wang, H.Q. Zhu, Z.F. Qin, F. Liang, G. Wang, J.G. Wang*, Deactivation of a Au/CeO2-Co3O4 catalyst during CO preferential oxidation in H2-rich stream, J. Catal. 2009, 264 (2): 154-162.
(9) F.X. Liang, H.Q. Zhu, Z.F. Qin, G.F. Wang, and J.G. Wang*, Effects of CO2 on the stability of Pd/CeO2-TiO2 catalyst for low-temperature CO oxidation, Catal. Commun., 2009, 10(5), 737–740.
(10) H. Wang, H.Q. Zhu, Z.F. Qin, G.F. Wang, F.X. Liang, and J.G. Wang*, Preferential oxidation of CO in H2 rich stream over Au/CeO2-Co3O4 catalysts, Catal. Commun., 2008, 9(6): 1487–1492.
(11) F.X. Liang, H.Q. Zhu, Z.F. Qin, H. Wang, G.F. Wang, and J.G. Wang*, Positive effect of water vapor on CO oxidation at low temperature over Pd/CeO2-TiO2 catalyst, Catal. Lett., 2008, 126(3–4): 353–360.
(12) F.X. Liang, H.Q. Zhu, Z.F. Qin, G.F. Wang, and J.G. Wang*, Preparation and Characterization of CeO2-TiO2 Composite Oxide and Its Catalytic Performance for CO Oxidation, Chin. J. Catal., 2008, 29(3): 264-268
(13) F.X. Liang, H.Q. Zhu, Z.F. Qin, G.F. Wang, and J.G. Wang*, Wang Low-Temperature Catalytic Oxidation of Carbon Monoxide, PROGRESS IN CHEMISTRY, 2008, 20(10):1453-1464
(14) H.Q. Zhu, Z.F. Qin, W.J. Shan, W.J. Shen, and J.G. Wang*, CO oxidation at low temperature over Pd supported on CeO2-TiO2 composite oxide, Catal. Today, 2007, 126 (3-4): 382–386.
(15) X.F. Tang, Y.G. Li, X.M. Huang, Y.D. Xu, H.Q. Zhu, J.G. Wang, and W.J. Shen*, MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature, Appl. Catal. B: Environ., 2006, 62(3-4): 265–273.
(16) Z.H Li*, Z.F. Qin, H.Q Zhu, and J.G. Wang, Synthesis of Diphenyl Carbonate from CO2, Phenoxide, and CCl4 with ZnCl2 as Catalyst, Chem. Lett., 2006, 35(7): 784–785.
(17) H.Q. Zhu, Z.F. Qin, W. Shan, W. Shen, J.G. Wang*, Low-temperature oxidation of CO over Pd/CeO2-TiO2 catalysts with different pretreatments, J. Catal. 2005, 233 (1): 41-50.
(18) H.Q. Zhu, Z.F. Qin, W. Shan, W. Shen, J.G. Wang*, Pd/CeO2-TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents, J. Catal. 2004, 225 (2): 267-277.